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SUMMARY

In panel specimens with rivet holes cracks initiate in the blunted knife edge of the chamfered rivet

hole and propagate inward as well as along the hole. The fatigue lifetime to dominant crack formation was

defined as the number of cycles, N500gm, to formation of a 500 Jam long crack. Statistical data on Ns00gm

and on crack propagation after N500gm were obtained for a large number of uncorroded specimens and

specimens corroded in an ASTM B 117 salt spray. Considerable variation in Ns0oum and crack propagation

behavior was observed from specimen to specimen of the same nominal geometry and loading conditions.

Statistical analysis of the data showed salt spray of Alclad 2024-T3 specimens with chamfered rivet holes

increased the probability for both early formation and later formation of a propagating 500 gm fatigue

crack. The growth of fatigue cracks after 500 gm size was little affected by prior salt spray.

INTRODUCTION

There is great variability in the fatigue behavior of any component even if the loading conditions

are constant and this is due to many factors such as microstructure, surface finish, and environmental

effects. The purpose of the present study was to assemble data sets on crack initiation, defined as the

lifetime to a propagating 500 _tm long crack, and the Paris equation constants for propagation after 500 _m

crack length in samples of Alclad 2024-T3 aluminum alloy before and after exposure to ASTM B 117 salt

spray with a 5% salt solution. The loading conditions were kept constant and the rivet holes were

machined in a computer machine controlled tool. Statistical analysis of the data was performed. A small

* This work was supported by the Federal Aviation Administration through the Center for Aviation
Systems Reliability
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but definite effect of corrosion was observed mainly in the initiation stage. Considerable variation in

cycles to fatigue crack initiation and in the Paris equation constants was observed in all of the data sets.

EXPERIMENTAL PROCEDURE

The material chosen for all the experiments was commercially available Alclad 2024-T3 aluminum

alloy sheet. The sheet was 1.016 mm (0.040 in.) thick including an aluminum cladding thickness of 60 tam

(0.00236 in.) on both sides. All the specimens were made from a single sheet of material. The specimens

used in this study were small panel specimens with single rivet holes. Figure 1 shows the specimen

dimensions, rivet hole dimensions, rolling direction, loading direction, and gripping configuration of the

specimens. The specimens were gripped using friction grips and had a length of 108 mm (4.25 in.)

between the grip edges. The specimens were 38.1 mm (1.5 in.) wide and were loaded normal to the

rolling direction of the sheet. The width of the specimens corresponds to the inter-rivet spacing and the

loading direction is consistent with the major stress axis of in-service airplane fuselages (refs. 1 and 2).

Flush head type rivet holes shown in figure 2 were drilled using a computer machine controlled

tool to ensure repeatability of the hole dimensions and drilling conditions. The rivet holes were drilled to

specifications used in the airplane industry (refs. 3, 4 and 5). The rivet holes were made with a chamfered

region that makes a 100 o angle centered on the vertical. The rivet hole chamfer was drilled so that it

penetrated through 80% of the thickness of the material, 0.813 mm (0.032 in.). The rivet hole chamfer

depth was measured using a ball bearing and the depth was controlled to within 5.0 btm (0.0002 in.). In

actual industrial applications many of the rivet holes and chamfers are drilled by hand with a specialized

tool. Considerably more variation in the rivet hole dimensions than that found in these experiments may

be expected. Care was taken to accurately repeat the drilling process because the chamfered rivet holes

tend to have a blunted knife edge (figure 2) that acts as a stress riser and a crack initiation site (refs. 1 and

6).

The tensile fatigue testing machine used was an MTS servo-hydraulic uniaxial fatigue apparatus

System No. 821.74-01 which has a maximum capacity of 100 kN. All the tests were performed in

ambient air at room temperature of 24 °C. The loading was done at 5 Hz with a saw-tooth wave generated

by a function generator and verified with the use of a digital recording oscilloscope. The specimens were

attached to the testing machine using friction grips. The grips were aligned with the use of a Wood's metal

pot.
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The nominal stress reported in all the plots of the data was calculated by dividing the applied load

by the cross-sectional area of the specimen neglecting the rivet hole. The fatigue testing was done in load

control with an R ratio of 0.1 and a maximum load of 4.0 KN. This load corresponds to a nominal stress

S of 100 MPa (14.5 ksi) in the cross-section of the specimen. .....

An optical microscope with a 4X objective and a 10X eyepiece equipped with a measuring

micrometer X-Y stage was used to observe fatigue crack formation and measure fatigue crack growth

quantitatively. The crack length measurements made with the X-Y stage were repeatable within 5 tam.

The cracking that was observed around the rivet hole initially consisted of many small surface cracks.

Later single cracks on each side of the hole became the dominant fatigue cracks. The fatigue crack lengths

were measured on the blunted knife edge side of the specimen in-situ with the maximum load

applied. The measurement was made from the edge of the rivet hole, where the fatigue crack initiated, to

the crack tip.

In this study there were three batches of specimens. The three batches were cut from the same

sheet of material but were fatigued and corroded in different ways from each other. The first batch was

fatigued to fracture without any exposure to a corrosive atmosphere. The second batch was fatigued for

100,000 cycles, exposed to a corrosive atmosphere, and then fatigued to fracture. The third batch was

exposed to a corrosive atmosphere prior to any cycling and then fatigued to fracture. The corrosive

atmosphere used in this study was exposure to ASTM B 117 salt spray with a 5% salt solution for a period

of 2 weeks. The specimens were then cleaned with deionized water and fatigued to fracture with

intermittent crack length measurements.

Variability in the cycles to fatigue crack initiation is expected due to local variations in the surface

finish of the hole caused by the drilling process as well as microstructural and chemical variations due to

the processing of the material. The local variations in surface finish can be stress raisers such as burrs,

machining marks, scratches, localized plastic deformation and particles in the material itself.

RESULTS

In previous studies (refs. 7 and 8) it was found useful to separate the fatigue process from a

chamfered rivet hole into two distinct parts in order to compare the variations from specimen to specimen.

For this purpose the fatigue cycles to fracture were broken down into a crack initiation segment and a crack

growth segment. The initiation segment is defined as the cycles to the initiation of a propagating fatigue

261



crack 500 _m in length. The growth segment is defined as the cycles from the initiation of a propagating

500 _tm long fatigue crack to fracture of the specimen.

..... Using in-situ optical microscopy it was observed that many small surface fatigue cracks initiated at

the blunted knife edge (figure 2) of the rivet hole during the fatigue cycling of the specimens. These

surface cracks varied in length but most did not appear to grow once they were initiated. It is thought that

microscopically the small surface cracks link up to form through cracks which propagated on both the

front and rear surfaces of the panel specimens. Two such through cracks, one on either side of the rivet

hole normal to the loading direction, formed in all of the specimens. These cracks were the dominant

fatigue cracks and grew to fracture. It was observed that once a through crack reached 500 gm in length it

was identifiable as a dominant fatigue crack. Small cracks also formed ahead of the crack tip while the

dominant fatigue cracks grew to fracture. The dominant fatigue cracks grow in part by joining up with the

small cracks that form ahead of the crack tip.

The specimens that had been exposed to the salt spray formed a dominant fatigue crack on one side

of the rivet hole many cycles before a dominant fatigue crack would form on the other side. This effect

was observed to correlate with the fact that the fatigue specimens were placed upright on their sides while

they were in the salt spray. The side that tended to first initiate a dominant fatigue crack coincided with the

side that was lower in the salt spray and allowed more salt and water to collect on that side of the rivet

hole.

The two cracks on each of the specimens were treated separately. Figures 3, 4 and 5 show the

crack length (a) vs. number of cycles (N) curves for the three batches of specimens. The a vs. N data for

each crack was curve fit to a least square exponential fit (eqn. 1) and the number of cycles to the initiation

of a propagating 500 gm long fatigue crack were determined for each crack.

a = ao evN (1)

Figure 6 is a plot of the fraction of rivet hole sides in which a propagating 500 gm long crack has

not formed vs. the number of cycles (N) for the three batches of specimens. The distribution of the data is

wider for the two batches of specimens that were exposed to the salt spray. For the batch that was

exposed to the salt spray prior to any cycling, the probability for earlier initiation of a propagating 500 gm

crack increased as well as the probability for later initiation as compared to the specimens that were not

exposed to the salt spray. The same occurred for the batch exposed to salt spray after 100,000 cycles but

to a lesser extent.
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Empirical solutions for the stress intensity factor of a crack emanating from a chamfered rivet hole

in a finite width specimen were not found in the literature. The AK values used were estimated using a

combination of two finite element method (FEM) solutions found in Murikami (ref. 9). This compound

method does not take into account the three dimensional effect caused by the rivet hole chamfer but is still

useful for determining an approximate AK value for comparison purposes.

The first FEM solution for the stress intensity factor K was for two equal length cracks emanating

from both sides of a circular hole in a finite width rectangular specimen. This solution was implemented to

correct the AK values for the finite width specimen and to correct for the cracks emanating from a hole.

The solution called for a radius R and a crack length C. The radius for the non-chamfer part of the rivet

hole was used for R. The value used for C was the average of the measured crack lengths of the cracks

emanating from both sides of the rivet hole. The stress _ used in the calculation was corrected for the loss

of load bearing material due to the rivet hole and the crack length. The empirical formula for the solution

was provided by H. Ftihring (ref. 10).

The second FEM solution for the stress intensity factor K was for a single crack in a finite width

rectangular specimen that is off center from the specimen centerline. This solution was implemented to

correct the AK values for the difference in length of the two cracks emanating from the rivet hole. To

avoid a double correction for a finite width specimen this solution was normalized so that only the relative

magnitudes of the two K values were used. The solution called for a crack length C and the eccentricity E.

The value used for C was the sum of the radius of the rivet hole and the average of the measured crack

lengths of the cracks emanating from both sides of the rivet hole. The value used for E was calculated

using the C value minus the radius R and the crack length on the opposite side of the specimen. The stress

used in the calculation was corrected for the loss of load bearing material due to the rivet hole and the

crack length. The empirical formula for the solution was provided by M. Isida (ref. 11).

The experiments were all performed with an R ratio of 0.1 thus the stress intensity range (AK)

values were calculated using 90% of the maximum stress corrected for the loss of load bearing material

due to the rivet hole and the crack length. Both the Ftihring and Isida equations corrected for finite width

specimens so the Isida equation was normalized to avoid a double correction for the finite width of the

specimen. The final equation for AK is as follows:

Acy = stress range corrected for loss of load bearing material and R ratio

F(_,h u) = Ftihring AK equation IA(0t,[3) = Isida AK equation for crack A

IB(C*,[3) = Isida AK equation for crack B
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AKA =N (_ a Acy • F(O,W) • 2 IA(ot,]3) / (IA(ot,]3)+ IB(ot,]3) )

(Ftihring eqn.) (normalized Isida eqn.)

(2)

The previously obtained exponential curve fit data for the a vs. N curves was used to calculate the

crack growth rate (da/dN) for each point on the a vs. N plots (eqn. 3).

da/dN = v ao e vN (3)

Figure 7, 8 and 9 are the daJdN vs. AK plots for the three batches of specimens. The data from all

three batches of specimens fit into a scatter band bounded by da/dN=9.26x 10-11 (AK)3.33 on the top and

daJdN=6.45x10"12(AK) 3.31 on the bottom.

DISCUSSION

In deciding on inspection intervals the probability of early failure, of course, dominates. Salt spray

prior to cycling has clearly increased the probability of early failure. It is not surprising that corrosion has

increased the severity of defects responsible for crack initiation. The authors were surprised to find an

increase in the long lifetime side of the distribution from the salt spray. There are specimens with

relatively benign defects and perhaps minor cracks or flaws are filled with corrosion product and thus

made less active. The effects of corrosion product in crack closure and in increasing the threshold stress

intensity range for crack propagation is well known (ref. 12).

In order to more quantitatively compare corroded and non-corroded specimens the N500gm data for

the three batches of specimens were fit by the Weibull equation (eqn. 4).

Percentage without 500 btm cracks = exp[ - (N/No) mw] (4)

Figure 10 is the same plot as figure 6 with the exception that the data was fit to the Weibull

equation with the number of cycles of loading (N) as the variable and the Weibull exponent mw and No as

the fitting parameters. The results of the curve fit are as follows for the three sets of specimens:
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Specimen Batch

No Corrosion

Corrosion at 100,000 Cycles

Corrosion Prior to Cycling

No nl_:__

145,944 4.776

144,692 5.842

133,908 4.234

The lower Weibull exponent is an indicator that the data for specimens which underwent corrosion

prior to cycling has a more spread distribution of probabilities than that of specimens with no corrosion.

The lower No for precorroded compared to non-corroded specimens indicates that the 500 _m long

dominant fatigue cracks initiated earlier in the pre-corroded batch of specimens in the low lifetime side of

the distribution.

Salt spray after 100,000 fatigue cycles had much less of an effect than corrosion prior to any

fatigue. Compared to the non-corroded specimens, the Weibull exponent is larger because the distribution

was steeper in the mid-life regime; however, the Weibull coefficient is slightly smaller. The Weibull

equation clearly fits these distributions only in the mid-range.

The cycles below which none of the specimens in a batch failed (i. e. the first data points in figures

6 and 10) are in the order corrosion at zero cycles, corrosion after 100,000 cycles, and no corrosion. This

order is reversed in the plot regime where the probability of no 500 lain long dominant fatigue crack

approaches zero.

Figure 11 is a p!ot of the Paris equation constant (C) vs. Paris equation exponent (m) that were

derived from the da/dN vs. AK plots of figures 7, 8 and 9. The two parameters were derived by curve

fitting the da/dN vs. AK data from each crack to the Paris equation (eqn. 5).

da/dN = C (AK) m (5)

As discussed earlier the da/dN vs. AK data from all three batches of specimens fit into a relatively

narrow scatter band bounded by daJdN=9.26x10-11 (AK)3.33 on the top and da/dN=6.45x 10-12(AK)3.31

on the bottom. As found in other metals there is a correlation of the C and m values. The data from each

of the three batches of specimens were curve fit to an exponential equation (eqn. 6) and the results are as

follows:

C : Co eP m (6)
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Specimen Batch

No Corrosion

Corrosion at 100,000 Cycles

Corrosion Prior to Cycling

Co I.t

1.8694e-08 -2.6843

2.4385e-08 -2.7748

1.6509e-08 -2.6635

These three curves are plotted in Figure 11 and there is little difference between them. The daJdN

vs. AK curves were not significantly different for the three batches of specimens.

Figure 12 is a plot of the Paris equation exponent (m) vs. number of cycles to formation of a

dominant 500 I.tm long crack (N500p_m). The data for the three batches of specimens were curve fit to a line

(eqn. 7). The results are as follows:

m = mo + s • N5001,tm (7)

Specimen Batch

No Corrosion

Corrosion at 100,000 Cycles

Corrosion Prior to Cycling

mo. s

1.5770 1.7615e-05

1.5022 1.7561 e-05

-0.8340 4.2212e-05

In this data there was a slight upward trend of increase in m with N500_m, i.e. the cracks which

initiated late in a number of cases grew more rapidly than the average.

In the three batches of specimens one crack would usually initiate earlier on one side of the

specimen than on the other. On some occasions one crack would grow to several mm in length before a

second dominant fatigue crack would appear on the other side of the specimen. This effect was more

prevalent in the specimens that were exposed to salt spray either before cycling or after cycling for

100,000 cycles. The specimens were laid upright on their sides in the salt spray. This caused salt and

water to deposit preferentially on the lower side of the rivet hole. In the salt sprayed specimens the side

that tended to fh'st initiate the dominant fatigue crack was the side where salt and water were deposited

preferentially. This is further evidence that salt spray affects fatigue crack initiation.
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1. Salt spray of Alclad 2024-T3 specimens with chamfered rivet holes increased the probability for

early formation of a propagating 500 btm fatigue crack.

2. A plot of probability for initiation of a propagating 500 btm fatigue crack vs. cycles becomes

more spread out from salt spray in both the high cycle and low cycle regimes.

3. The growth of fatigue cracks after 500 btm size was little affected by prior salt spray.
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Figure 1. Specimen dimensions, rivet hole dimensions and experimental setup
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Nominal Stress = 100 MPa
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Nominal Stress = 100 MPa
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